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The chiller model documented in section 4 of the report was coded in C++. The 

property routines were developed as described in Appendix B of the report.  This 

appendix begins with a description of all the files that are a part of the software.  This is 

followed by a description of how the model is executed from within Matlab.  Finally, the 

process for simulating the more common faults in the system model is described. 

 

Installation and file/directory structure: 

The complete system model is packaged as a compressed (zip) file named 

chillersim1p0.zip.  Installation consists of un-compressing this file to a known directory 

and including this directory and all sub-directories therein into Matlab’s search path. 

Fig. 1 shows the file and directory structure seen upon uncompressing 

chillersim1p0.zip: 

 

Fig.  1: Screen-shot of unzipped chiller model files 

 
Chiller.dll is the dynamically linked library containing all the routines required to 

run the chiller components and system.  The Geometries sub-directory contains the text 

files with the physical constructional details of the various components of the chiller.  

The IOFiles sub-directory contains the text files that are used by the chiller model during 

initialization and execution. The Properties sub-directory contains the property tables 

that are read into memory when the model is first launched. 



Fig. 2 shows the text files in the Geometries directory. 

 

Fig.  2: Screen-shot of the Geometries directory 

 
COMPRESSORGEOMETRY.TXT: This file contains the details required for defining the 

controller and compressor models.  It is strongly recommended that these values not be 

changed as they could result in unpredictable behavior of the compressor model and 

hence the system model.  Appended at the end of the file is a line-by-line description of 

parameters. 

VALVEGEOMETRY.TXT: This file identifies and lists the constructional parameters used in 

the valve model.  This information consists of (also see Appendix C) the maximum flow-

area of the valve, the angle of the valve needle, the discharge coefficient, spring 

compliance, sensing bulb time constant and the minimum superheat pressure setting. 

COOLINGLINEORIFICEGEOMETRY.TXT:  This file identifies and lists the required 

constructional parameters used to define the orifice in the cooling line which is the flow-

area of the orifice and the discharge coefficient. 

CONDENSERGEOMETRY.TXT, EVAPORATORGEOMETRY.TXT: Since the evaporator and 

condenser are based on the same model, the constructional information required to define 

either one is the same and both of these text files are structured identically. 

Referring to Fig. 3, the first line consists of two integer fields.  The first integer 

identifies whether the data that follows is for an evaporator (a value of ‘1’) or for a 

condenser (a value of ‘2’).  The second integer identifies the number of nodes that the 

heat exchanger is discretized into. 



 

 

Fig.  3: Heat exchanger geometry specification format 

 
The second line contains information about the tube size and material, listed in the 

order of inside diameter, outside diameter, length, specific heat and density.  The sixth 

entry in this line is a fouling factor that will be described in the section on fault 

implementation. 

All subsequent lines provide node specific information.  The total number of lines 

must correspond to the number of nodes specified as the second integer in the first line.  

A mismatch will result in an error message and program termination.  The lines are also 

to be arranged in the order that corresponds to the nominal flow-direction of the 

refrigerant through this heat exchanger with the first node being the one into which the 

refrigerant enters the heat exchanger and the last node as the one from which it leaves. 

Each line of node information consists of three fields.  The first field is the integer 

number of tubes encompassed in that node.  The second field is the refrigerant volume in 

that node.  The third field is the distance between the node faces in the vertical direction, 

i.e. in the direction of refrigerant flow. 

SYSTEMGEOMETRY.TXT: This file lists the paths of all the other geometry text files and 

can be used to load different component details located in different directories. 

The sub-directories 4NodeGeometries and MaxNodeGeometries contain ready to 

use condenser and evaporator geometry files.  The former apply to each heat exchanger 
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iscretized into 4 nodes.  The latter apply to each heat exchanger being discretized 

into as many nodes as there are tube-rows in that heat exchanger (12 in case of the 

evaporator and 13 in case of the condenser). 

The IOFiles sub-directory is where the input to and output from the model are 

stored.  Fig. 4 shows the files within this sub-directory.  The inform

e the system for start-up is stored in the text file(s) Initial_*.txt.  The two possible 

initialization modes are designated FULL and MINIMAL.   Full initialization consists of 

specifying the refrigerant pressure and refrigerant enthalpy1 in both heat exchangers.  

Minimal initialization requires only three values, i.e., water temperatures leaving the 

evaporator and condenser, and total refrigerant charge in the system. It is to be noted that 

both of these modes of initialization pre-suppose that the system is in an equilibrium 

condition corresponding to the instant before start-up.  This means that whichever mode 

is used to initialize the system, the controller begins with the compressor’s inlet guide 

vanes in the minimum opening position and the RLA limit at its minimum.   

 

Fig.  4: Screen-shot of IOFiles directory 

n is begun, the controller gradually ramp

p

In other words, the chiller system model can only be executed in a way that begins with a 

start-up.  At the end of every 1s of simulation time, (i.e. the end of every loop of the 

 
1 Please see Appendix B for more information on refrigerant properties.  The refrigerant enthalpy is 
referenced to 200 kJ/kg at 273.15K and the specific entropy to 1.00 kJ/kg-K at 273.15K, with the 
refrigerant in saturated liquid condition. 



second nested level described in section 5.1 of the report) the state of the system is saved 

in the text file SystemState.txt.    

There may exist a text file by name SavedState.txt.  This file is created by the 

program when the user requires the current state to be saved between sessions.  Saving 

and res

tion 
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initialization is required and is shown in Fig. 6.   

or minimal initialization 

toring the chiller state between sessions is described under the section on Usage. 

The following are the descriptions of the text files in the IOFiles directory. 

INITIAL_FULL.TXT: This is the file read by the chiller model when a full initialization is 

required.  The format of information in this file is as shown in Fig. 5. 

 

Fig.  5: Screen-shot of text file format for full initializa

_MINIMAL.TXT: This is the file read by the chiller model w

 

Fig.  6: Screen-shot of text file format f



SYSTEMSTATE.TXT:  The system’s states are saved in this file automatically every 1s of 

simulation in

 

Line1: sim up 

Line 2: evaporator pressure, condenser pressure, evaporator exit enthalpy, condenser exit 

 temperature in oC ; 

fer rate in kW and  

in kg/s. 

 the format shown in Fig. 7. 

 

Fig.  7: Screen-shot of text file format for system states information 

ulation time i.e. number of seconds that the model has run since start-
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above.  The text files in the Properties directory are as described in Appendix B. 
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When called w

ing on the value of the integer argument: 

chiller(0) – performs a minimal initializatio

chiller(1) – performs a full initialization reading from Initial_FULL.txt 

chiller(2) – saves the current state of the system to SavedState.txt. 

chiller(3) – loads the state of the system saved in SavedState.txt. 



If a repeat initialization call is made, the existing chiller state information is 

simply overwritten.  It is very important to note that all text filenames used by the 

program are unique and are overwritten without warning.  Therefore, if any of the text 

files are desired by the user to remain unchanged, such files must be either renamed or 

relocated into another directory.  This apparent lack of user-friendliness in fact allows for 

greater flexibility by allowing incorporation of the model into a program as a function 

call that is self-contained and that requires no real-time inputs from the user. 

The chiller can also be initialized by reloading state information saved from an 

earlier session.  This is done by entering ‘chiller(3)’ at the Matlab command prompt.  On 

executing this, the text file SavedState.txt in the IOFiles directory is read and the system 

is restored to the state that existed when this text file was created.  This file is created 

automatically by the program upon entering ‘chiller(2)’ at the command prompt.  Any 

existing SavedState.txt file will be overwritten. 

 

Two-argument-call: 

After successful initialization, the chiller model can be executed by entering the 

following: 

y = chiller(t,u) 
‘t’ and ‘u’ are the inputs required to drive the chiller model and ’y’ is the output 

returned.  The following is a description of these parameters. 

t is an integer, positive number of seconds that the chiller is to be run; 

u is the (5 x 1) vector of water-side boundary conditions in the order: 

u[1] = Evaporator water entering temperature in oC 
u[2] = Condenser water entering temperature in oC 

u[3] = Chilled water set point temperature in oC 

u[4] = Evaporator water mass flow-rate  in kg/s 

u[5] = Condenser water mass flow-rate  in kg/s 

y is a (29 x 1) vector of various system performance outputs, in the following 

order: 

y[1]  = Chiller simulation time since start-up in s 

y[2]  = Evaporator pressure in kPa 



y[3]  = Condenser pressure in kPa 
y[4]  = Refrigerant flow rate through compressor in kg/s 
y[5]  = Refrigerant flow rate through valve only in kg/s 
y[6]  = Refrigerant flow rate through cooling line only in kg/s 
y[7]  = Sum of y[5] and y[6] 
y[8]  = Motor power in kW 
y[9]  = Motor heat losses in kW 
y[10] = Condenser water-side heat transfer rate in kW 
y[11] = Evaporator water-side heat transfer rate in kW 
y[12] = Evaporator leaving water temperature (chilled water temperature) in oC 

y[13] = Condenser leaving water temperature in +C  

y[14] = Superheat in oC  
y[15] = Sub-cooling in oC  
y[16] = Condenser refrigerant mass imbalance in kg 

y[17] = Evaporator refrigerant mass imbalance in kg 

y[18] = Energy balance across compressor in kW 
y[19] = Energy balance across condenser in kW 
y[20] = Energy balance across evaporator in kW 
y[21] = Refrigerant specific enthalpy leaving evaporator in kJ/kg 

y[22] = Refrigerant specific enthalpy leaving compressor in kJ/kg 
y[23] = Refrigerant specific enthalpy leaving condenser in kJ/kg 
y[24] = Refrigerant specific enthalpy entering evaporator in kJ/kg 
y[25] = Valve lift in m 
y[26] = Valve flow area in m2 
y[27] = Refrigerant mass in condenser in kg 
y[28] = Refrigerant mass in evaporator in kg 
y[29] = Total refrigerant mass in the system in kg 

 

The usage of the model is illustrated by a series of examples described below and 

included as m-files with the software.  These m-files can be used as templates by the user. 

 



 

Example 1 (Ex1.m): Start-up in fault-free condition: 

This example demonstrates the preparatory steps that precede execution of the 

model, followed by the actual execution of the chiller model through the start-up.  When 

the steady-state is reached, the execution is stopped and the state of the system at that 

time is saved for future use. 

Step 1- System Definition: The default heat-exchanger geometry is used, i.e., as defined 

in the files in the Geometries directory. 

Step 2 – Initialization: The default initialization of Initial_FULL.txt is used. 

Step 3 – Boundary conditions: The u vector is defined for the start-up period.  For 

simplicity, it is assumed to remain constant during the complete start-up region.  The 

desired set point is 10oC.  The normal water-flow rates of 13.2kg/s in the evaporator loop 

and 16.7kg/s in the condenser water loop are used.  The evaporator return water 

temperature is 16oC and the condenser return water temperature is 30oC. 

Referring to the code in Ex1.m, (Fig. 8) line 4 is the FULL initialization step.  

This is followed by the setting of the water-side boundary conditions.  The chiller output 

plotting rate is specified in line 29.  With this information, the chiller execution loop is 

begun at line 34.  For certain combinations of initial conditions and entering water 

temperature change rates during early (<150s) start up, it has been found that the model 

fails to converge.  A full characterization of this numerical issue is in progress, but it can 

be overcome by gradually and linearly ramping the entering water temperature from the 

initial condition to the final value over the first 120s-150s.  This is shown in lines 39-43. 

Line 44 updates the input vector u and is followed by the execution of the chiller 

through a 10s loop.  The output of the chiller is recorded at every 1s and saved in the 

output array which is saved to the disk every 10s (line 57).  The 0.1s pause at line 59 is 

required only to allow the figure plots to refresh.  The final state of the chiller is saved 

(line 62) into SavedState.txt for future use.  Fig. 9 shows selected output of this example. 

 



Fig.  8: m-code of Example 1. 



Fig.  9: Output plot of selected chiller parameters in Example 1. 

 

During the first 90s of the simulation the model uses a fixed value of polytropic 

efficiency for the compressor because the map (eqn. 20) does not apply during that time.  

This results in a low compressor flow-rate and therefore a low power prediction.  This 

also slows down the early response of the pressures and water temperatures.  Once the 

efficiency map becomes applicable (at 90s), the system’s response is seen to change 

significantly.  Thereafter, the solution proceeds smoothly to the steady state.  The linear 

power variation up to ~500s is the effect of the current limit imposed by the controller 

which prevents the compressor from delivering large flow-rates to rectify the large initial 

chilled water temperature error. 

 

 



 

Example 2 (Ex2.m): Evaporator water entering temperature change in fault-free 

condition 

This example demonstrates the revival of a system state from an earlier saved state2, 

followed by executing the system model by driving it through a transient triggered by a 

2oC step drop in the evaporator return water temperature.  The step-change occurs 50s 

after the start of the execution.  When steady-state is reached again (150s later), the 

execution stops and the system state is saved.  Fig. 11 shows the m-code for this example. 

The significant differences are the initialization, which now is done by loading the  by 

loading the chiller state from the earlier saved state (line 4), the way the boundary 

conditions are updated in lines 40-43 and the boundary condition updation and result 

plotting sampling time (line 29) which is now done every 2s.  Fig. 10 shows the output 

for this example.  

                                                 
2 It is assumed here that the text file SavedState.txt is as was saved at the end of Example 1.  If this is not 
the case,  move the SavedState.txt file (if one exists) to another location on the disk, copy the file 
SavedState_1000.txt from the IOFiles directory to the Chillersim directory and rename it SavedState.txt. 



Fig.  10: Output plot of selected chiller parameters in Example 2. 



Fig.  11: m-code of Example 2 



A drop in evaporator entering water temperature, keeping the same chilled water 

set-point and water-flow rate, corresponds to a drop in the building load.  This results in 

lesser heat transfer to the refrigerant in the evaporator.  This causes the leaving water 

temperature to drop below the set-point thus far maintained, as seen in Fig. 10.  The 

reduced evaporator capacity implies that the motor now has to deliver lesser power and 

the condenser has to reject lesser heat to the cooling water.  The stair-step reduction in 

motor power is caused by the step-and-wait action of the controller that now responds to 

the negative error in chilled water temperature.  The reduced compressor flow rate and 

necessary condenser heat duty result in the lower condenser pressure and condenser 

leaving water temperature. 

 

Example 3 (Ex3.m): Evaporator and condenser water entering temperature change in 

fault-free condition: 

This example is a repeat of Example 2, with the difference that the condenser 

entering water temperature is also changed (increased) by 2oC during the transient 

triggered by a 2oC drop in evaporator return water temperature.  The m-code can be seen 

in Ex3.m.  Fig. 12 shows the output for this combination transient. 

The increased condenser water temperature results in a higher (than in Example 

2), condenser pressure and motor power.  The higher condenser pressure is caused by the 

need to sustain the temperature difference between the refrigerant and (the now warmer) 

water in the condenser which will allow the required heat transfer rate.   The stabilized 

condenser leaving water temperature is also seen to be higher as a result.  The motor 

power is higher because of the increased pressure difference that the compressor now 

needs to work against. 

The condenser leaving water temperature is seen to first drop, in response to the 

reduced evaporator entering water temperature, and then increase because of the increase 

in the condenser entering water temperature.  The chilled water temperature also 

responds similarly but the controller manages to return it to the un-changed set-point. 

 

 

 



Fig.  12: Output plot of selected chiller parameters in Example 3. 

 

Example 4(Ex4.m): Evaporator and condenser water entering temperature change and 

chilled water set-point temperature change in fault-free condition: 

This example includes a 2oC increase in the chilled water set-point temperature 

into the boundary conditions imposed on Example 3.  The system begins with the same 

initial condition as exists at the end of Example 1 (see footnote on pg. 13).  Fig. 13 shows 

the output.  Note the large drop in motor power with the reduced load caused by a smaller 

evaporator return water temperature as well as increased set point temperature.  The 

chilled water temperature settles down to the new set point stably.  The evaporator 

pressure shows some small scale transients between 100 and 120s.  This is caused by the 

dynamics in the valve. 

 

 

 



Fig.  13: Output plot of selected chiller parameters in Example 4 

 

Fault simulation 

The preceding examples demonstrate the use of the model and its output for the 

fault-free condition.  This section demonstrates how the system performance can be 

generated with faults introduced.  The following faults can be emulated in the system 

model: 

(a) Up to 40% reduction in water flow-rates in one or both heat-exchangers 

(b) Up to 20% refrigerant undercharge in the system 

(c) Up to 20% refrigerant overcharge in the system 

(d) Up to 45% fouling in one or both heat-exchangers 

 

 



 

Example 5 (Ex5.m) Reduced water flow rates: 

This fault can is introduced simply by altering the values entered in the input 

vector u above.  This fault can be introduced either as a fully-developed one or as a 

gradually developing one.  The nominal water flow-rates are 13.2 kg/s in the evaporator 

water loop and 16.7 kg/s in the condenser water loop.   This example demonstrates the 

reduction in condenser flow-rate as a gradually developing fault.  Water flow-rate 

reduction in the evaporator loop, or in both evaporator and condenser water loops, can 

also implemented in the same manner. 

The system begins at a state as at the end of Example 1.  At this point in time, the 

condenser water flow rate is at its normal value.  Ten seconds after the execution starts 

the fault begins to develop.  Over the next 180s the flow rate drops linearly to 60% of the 

normal, i.e., 10 kg/s.  Fig. 14 shows the output of this simulation. 

Fig.  14: Output plot of selected chiller parameters in Example 5 



 

As expected, the reduced water flow rate results in lesser heat transfer rate on the 

water side in the condenser.  This necessitates a higher temperature difference between 

the refrigerant and the water, which is achieved by a higher condenser pressure.  The 

evaporator pressure is virtually unchanged.  The motor power increases because of the 

higher pressure difference across the compressor. 

 

Example 6 (Ex6.m): Charge variation: 

Refrigerant undercharge and overcharge are implemented in the same manner, 

i.e., through the initial enthalpy distribution when using a full initialization or by simply 

specifying the total refrigerant charge when using a minimal initialization.  The 

refrigerant charge quantity normal for the system model is 124.7 kg (see section Error! 

Reference source not found.).  Varying the magnitude of these faults while the model 

executes is not incorporated in the present code.  

Fig.  15: Output plot of selected chiller parameters in Example 6 



In this example, the system is initially charged with 80% of the nominal charge, 

i.e., with 99.76 kg of refrigerant.  This is done by altering the third field in 

Initial_MINIMAL.txt.  The model is run from start-up through to the achievement of 

steady-state.  The m-code for executing this example is identical to that of Example 1.  

Fig. 15 shows the output.  In comparison with the output of Example 1 which is with the 

correct refrigerant charge, the system pressures are seen to be lower as is the motor 

power.  Other parameters can be plotted by loading output.mat into the Matlab 

workspace.  The columns of output are indexed identically to the output vector y listed 

earlier in this section.  

Refrigerant overcharge can be similarly implemented by setting the value in 

Initial_MINIMAL.txt.  Alternatively, for either case of charge variation, the enthalpy 

distribution can be set in Initial_FULL.txt and the chiller can be initialized by a single-

argument call with a value of 1.  The refrigerant volumes of the heat exchangers can be 

determined from their geometry files. 

 

Example 7: Heat exchanger fouling: 

Heat exchanger fouling is implemented by specifying fouling as a percentage loss 

in heat transfer conductance or area.  The fouling applies only to the water-side of the 

tube.  This fault parameter is entered along with the heat exchanger geometry, as the sixth 

field of the second line in the geometry file shown circled in Fig. 16.  The magnitude of 

fouling cannot be altered during model execution in the present code.  Any of the 

example m-codes can be used with this change made in the geometry file. 

Fig.  16: Screen-shot of condenser geometry file with 40% fouling introduced 



Example 8 (Ex8.m): Boundary condition updation from file: 

The final example m-file is the file used to execute the chiller model through the 

data presented under the section on validation.  This file demonstrates how the boundary 

conditions stored in a text file on disk can be read at pre-determined intervals and used to 

execute the chiller model.   The user is encouraged to examine the code in this m-file as 

much of it is self-explanatory. 

 

Error handling and reporting 

Error messages generated are broadly divided into those that are launched from 

within the Matlab interface and those that are launched from within the model code.  The 

errors trapped within the model code are logged to a text file error1.log, which is created 

automatically when the chiller model is run for the first time in any session.  The Matlab 

interface generated errors consist of the following: 

1. ‘Invalid call to chiller routine’ – the number of arguments passed and returned 

in the call to chiller does not match either the single-argument call format or 

the two-argument call format described above.   

2. ‘Cannot create engine’ – a chiller model could not be created in memory, 

likely because of insufficient memory. 

3. ‘System construction failed’ – defining the system components geometry 

failed. This can occur if the paths to the geometry files have not been included 

into Matlab’s search path or if any of the geometry files are of incorrect 

format.   In case of the latter, additional error information is logged to 

error1.log. 

4. ‘Initialization code needs to be an integer’ – the value passed in a single-

argument call to chiller was not an integer.  Passing anything other than an 

integer will trigger this error. 

5. ‘Invalid argument value’ – the value passed in a single-argument call to chiller 

was not any of 0,1,2 or 3.  These are the only acceptable values for a single-

argument call. 

6. ‘System state could not be saved’ – saving the system state in the text file 

SavedState.txt failed.  A possible cause of this is insufficient disk space. 



7. ‘System state could not be loaded’ – loading a previously saved system state 

failed.  Possible causes of this are: 

a. the file SavedState.txt was not found because the path was not included 

into Matlab’s search path 

b. the format of information in the file SavedState.txt is incorrect.  

Additional error information is logged in error1.log. 

c. one or more of the system components could not be initialized with the 

data in SavedState.txt.  Additional error information is logged in 

error1.log. 

8. ‘System initialization failed’ – the system components could not be initialized 

with the data in Initial_FULL.txt.  Possible causes are: 

a. the file Initial_FULL.txt was not found because the path was not 

included into Matlab’s search path 

b. the format of information in the file Initial_FULL.txt is incorrect.  

Additional error information is logged in error1.log. 

c. one or more of the system components could not be initialized with the 

data in Initial_FULL.txt.  Additional error information is logged in 

error1.log. 

9. ‘Chiller not initialized’ – an attempt was made to use the chiller model 

without performing an initialization. 

10. ‘Chillersim error. Consult error log file for details’ – an error occurred in the 

model code and additional error information has been logged in error1.log. 

 

Fig. 17 shows an example of error information that is logged into error1.log.  The error 

entry shown is that of an error in the format of information provided in the initialization 

file.   The error messages are logged from local to global, i.e. the first error message 

identifies the location in the code where the effect of the error was observed.  Subsequent 

error messages help identify the path through the code that was being executed at the 

time the error occurred.  Since the cause of the error can lie away from the point where its 

effect is observed, the error message can only be generic and a full listing of these error 

messages serves little purpose. 



Fig.  17: Screen-shot of error log file with an example error entry 

 
The error trapping structure has been designed to trap most of the common errors 

that were conceived as possible.  As usage of the model increases, additional information 

will be available from users that will help identify errors and bugs not yet detected and 

the code can be made more robust. 

 


